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Purpose/Introduction
One of my assignments for AP calculus was to make some sort of review for the AP test. The teacher 
suggested things like flash cards, but said that anything which could help us review would qualify. The 
assignment was called Calculus At A Glance, it's entirely possible that you know of it. 

A friend who had the same assignment the previous year had compiled all of her notes (which were and 
have always been very thorough) into a binder. I knew that the compilation effort would be more 
helpful to me than any studying of flash cards or notes, and so I liked the idea. I did not however like the 
idea of handwriting something that could easily fill a .5" binder. This is the result of a weekends worth of 
work.

If you find any typos, or even worse actual mathematical mistakes, please shoot me an email.

Last spring, I lent this to a friend taking intro level calculus. He said that I should put this on the web 
because people might actually find this useful. I've finally gotten around to it, and I hope that it helps 
someone. 
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For example:        is even because

If a function  satisfies           for every number  in its domain, then  is called an even function.

                     
For example:        is odd because

If a function  satisfies            for every number   in its domain, then  is called an odd function.

Analytic:

For example:
The geometric significance of an even function is that its graph is symmetric with respect to the y-axis.

Geometric:

         

For example: 
The graph of an odd function is symmetric about the origin

    

     
 

  

{ }
   

{
}

1.1 Analytic and Geometric Methods of Determining Odd or Even 
Functions
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 is defined as the number such that      

           
 

 
          OR               

 

 
  

 
  

     
   

            

 
                  

   

 

 
         

     
   

       
 
 
         

   
     

 
 
  
 

          
   

            

 
                  

   

            

 
              

          

Proof: Let          . Then       
 

 
 , so        . But by the definition of the derivative,

      
   

     
 
 
     

Because        , we have

   
   

     
 
 
    

Therefore

1.2 Definition of e (e expressed as a limit)
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If the point  has the Cartesian coordinates      and the polar coordinates      , then, from the 
figure, we have

     
 

 
                     

 

 
 

And so

                          

Polar to rectangular:

 

 

 
 

Convert the point    
 

 
  from polar to Cartesian coordinates.

                        
 

 
 

             
 

 
      

 

 
    

             
 

 
      

  
   

 
      

   

Therefore, the point is      
   
 in Cartesian Coordinates.

Example:

                           
 

 
 

To find  and  when  and  are known, we use these equations:

Represent the point with Cartesian coordinates       in terms of polar coordinates.

        
        

          
           

   
   

     
 

 
     

If we choose  to be positive, then 

Since the point       lies in the fourth quadrant, we can choose    
 

 
 or   

  

 
  . Thus, 

one possible answer is    
   
  

 

 
  ; another is    

   
 
  

 
   .

Example:

Rectangular to polar:

1.3 Coordinate Conversion Between Polar and 
Rectangular(Cartesian)
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                    and                    
Suppose that  is a constant, and the limits

exist. Then

   
   

               
   

        
   

    1.

   
   

               
   

        
   

    2.

   
   

            
   

    3.

   
   

              
   

        
   

    4.

   
   

 
    

    
      

   
   

    

   
   

    
        

if             
5.

(a)                                 (b)                             (c)          
    

    
    

                                                          

                                                            

                                                            

Example:

                                        (Law 2)

          

(a)                                                               (Law 1)

(b)   Because               , the given limit does not exist.

(c)   Because              , the given limit does not exist.

Solutions:

                                       (where n is a positive integer)6.

Special Limit Laws (using the following two special limits)

   
   

   7.

   
   

   8.

                    (where n is a positive integer)9.

                             (If n is even, we assume that    )10.

           
                 

           
             (If n is even, we assume that             )11.

Limit Laws:

2.1 - Basic Properties of Limits
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Example:
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Factoring:

   
   

    

   
          

   

          

   
                 

   
     

     
        

 
            

           

 
                

     

 
           

   
   

        

 
               

   
       

Multiplying by conjugate:

    
   

 

     
       

  
           

 

    
   

      
          

   
                

 

   
      

 

 
  

   
   

     
       

  

  
              

   

     
       

  

  
           

     
       

  

     
       

  
              

   

        

        
       

   
                  

   

  

        
       

   
              

Common Denominators:

   
   

 
    

 
   

   
         

   

   
       

   
         

   
 

   
       

   
         

   
 

   

  
      

 

   
         

   
 

 

  
     

 

 
  

2.2 - Simplifying 
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Limits at positive infinity:

Let  be a function defined on some interval      . Then

   
   

      

means that the values of     can be made arbitrarily close to  by taking  sufficiently large.

Limits at negative infinity:

Let  be a function defined on some interval       . Then

   
    

      

means that the values of     can be made arbitrarily close to  by taking  sufficiently large negative.

Note: The symbol  does not represent a number. Nonetheless,     is often read "as  approaches positive or         
negative infinity."

Horizontal asymptotes:

The line    is called a horizontal asymptote of the curve       if either

                           OR                             

      

   
   

 

  
     

If    is a rational number, then

   
    

 

  
     

If    is a rational number such that   is defined for all  , then

 
   
   

     
   

 
        

   

 
     

   
   

      
   

 
       

   

 
     

                      

 
     

     
         

 

 
  

   
   

       

        
                

   

  
 
    

 
     

  
 
    

 
     

          
   
   

   
 
    

 
      

   
   

   
 
    

 
      

               

            
 

 
 as well.

This shows that there is a horizontal asymptote at   
 

 
 or the function      

       

        
        .

Example:

2.3 - How to Find Horizontal and Slant Asymptotes Analytically
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Some curves have asymptotes that are oblique, that is, neither horizontal nor vertical. If

then the line       is called a slant asymptote because the vertical distance between the curve   
    and       approaches 0, as in the figure below. For rational functions, slant asymptotes occur 
when the degree of the numerator is one more than that of the denominator. In such a case, the equation 
of the slant asymptote can be found by long division.

Slant asymptotes:

      

           

      

     
  

    
      

     
  

    
         

 

    
      

Since     is never negative, there is no 
vertical asymptote. Since       as    
and        as     , there is no vertical 
asymptote. But long division (because the degree 
of the numerator is larger than that of the 
denominator) gives

Example:

        
 

    
     

 

 
  

  
 

  
   

           as          

So, the line    is a slant asymptote.
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Assume that  lies between 0 and 
 

 
 . The figure to the right 

shows a sector of the circle with center  , angle  , and a 
radius of 1.

        . Also,                   

So,                 , making       , so 
    

 
      

      
    

 
      because:

E

D

B

A
 

1

 

C

A

B

E

 

Let the tangents at A and B intersect at E. From 
the figure to the left, it can be seen that the 
circumference of the circle is smaller than the 
length of a circumscribed polygon, and so 

         
              
     

                 
                . Thus

So,   
    

    
    , making      

    

 
      

   
    

    

 
      

We know that          and            
 , so by the Squeeze Theorem, we have

   
   

    

 
      

    

 
    is an even function, so its right limit must be 

equal to its left limit, therefore

     
   

    

 
     

    

      
             

   

    

 
        

   

    

      
             

 

   
        

   
   

      

 
            

   
 
      

 
         

      

      
             

   

       

         
               

   
 

     

         
           

Therefore,       
      

 
        

2.4 - Two Special Trigonometric Limits
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A function  is continuous at a number  if 

   
   

         

    is defined (that is,  is in the domain of  )1.
          exists (so  must be defined on an open interval that contains  )2.
   
   

         3.

Notice, this definition implicitly requires three things:

If  is not continuous at  , we say  is discontinuous at  , or  has a discontinuity at  .

Examples:

     
      

   
                is undefined, so  is discontinuous at 2 (a)

      
 

  
      

     
           is defined, but                  

 

  
      , so  is 

discontinuous at  

(b)

       
          

   
                      exists, but

               ,  o  is discontinuous at  .

      
      

   
          

     
            is defined and                  

      

   
      (c)

            The greatest integer function has discontinuities at all integers because          
does not exist if  is an integer.

(d)

2.5 - Definition of Continuity

   II. Limits And Continuity Page 1    



     
      

   
         (a) (b)         

 

        

     

      
      

   
             

     

(c)
         (d)

2.6 - Diagrams/Descriptions of Removable and Non-Removable 
Discontinuities
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The illustrated discontinuity in both (a) and (c) is called removable because we can remove the 
discontinuity by redefining  at just the single number 2. [The function         is continuous.] The 
discontinuity in part (b) is called an infinite discontinuity. The discontinuities in part (d) are called jump 
discontinuities because the function "jumps" from one value to another.

Show that the function                    
is continuous on the interval       .

If       , then using limit laws, we have

   
   

        
   

        
       

 

      
   

     
       

       
   

      
           

 

        
       

     

                               and                             

Thus, by the definition of continuity,  is continuous at  if       . Similar calculations show 
that 

So,  is continuous from the right at -1 and from the left at 1. Therefore,  is continuous on       

Example:
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Suppose that  is continuous on the closed interval      and let  be any number between     and     . Then 
there exists a number  in      such that       .

The Intermediate Value Theorem states that a continuous  function takes on every intermediate value between the 
function values     and     . It is illustrate by the figures below. Notice that the value  can be taken on once, or 
more than once.

a c

    

    

N

00 c1 c3

N

    

    

ab bc2

Show that there is a root of the equation               between  and  .

                 

Let                  . We are looking for a solution of the given equation, that is, a 
number  between  and  such that       . Therefore, we take    ,    , and     . We 
have

                   
and

Thus            , that is     is a number between     and     . Now  is continuous 
since it is a polynomial, so the Intermediate Value Theorem says that there is a number  between 
 and  such that       . In other words, the equation               has at least 
one root  in the interval      .

Example:

2.7 - Intermediate Value Theorem

   II. Limits And Continuity Page 1    



Indeterminate quotients (
 

 
 and 

 

 
  )

Suppose that  and  are differentiable and        near a (except possibly at a). Suppose that

                                 and                                

                              and                                 
or that

(In other words, we have an indeterminate form of type
 

 
 or

 

 
  ). Then

   
   

    

    
        

   

     

     
     

if the limit on the right side exists (or is   )

Note: L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the 
quotient of their derivatives, provided that the given conditions are satisfied. It is especially 
important to verify the conditions regarding the limits of  and  before using l'Hospital's Rule.

Note: L'Hospital's Rule is also valid for one-sided limits and for limits at infinity or negative infinity; 
that is, "   " can be replaced by any of the following symbols:     ,     ,    ,   
  .

Find       
   

   
   .

                            and                         
Since 

   
   

   

   
      

 
  
        

 
  
        
             

   

 
   

 
      

   

 

 
    

we can apply l'Hospital's Rule:

Calculate       
  

    .

   
   

  

  
       

   

  

  
   

We have           and           , so l'Hospital's Rule givess

Since     and     , the limit on the right side is also indeterminate, but a second 
application of l'Hospital's rule gives

   
   

  

  
       

   

  

  
       

   

  

 
     

Example:

2.8 - L'Hospital's Rule
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Indeterminate products (   )

   
 
 

 
  
                       or                          

 
 

 
  
  

If             and              , then it isn't clear what the value f               , 
if any, will be. There is a struggle between  and  . If  wins, the answer will be 0; if  wins, the 
answer will be   . Or there may be a compromise where the answer is a finite nonzero number. 
This kind of limit is called an indeterminate form of type    . We can deal with it by writing the 
product   as a quotient:

This converts the given limit into an indeterminate form of type 
 

 
 or 

 

 
  so that we can use 

l'Hospital's Rule.

Evaluate            .

   
    

        
    

   

 
   

       
    

 
   

 
 
     

        
    

      

The given limit is indeterminate because, as     , the first factor ( ) approaches 0 while 

the second factor (   ) approaches   . Writing   
 

 
 

 
   
   , we have 

 

 
   as     , so 

l'Hospital's Rule gives

   
    

        
    

 

 
   
   
    

This gives an indeterminate form of type 
 

 
 , but if we apply l'Hospital's Rule we get a 

more complicated expression than the one we started with. In general, when we 
rewrite an indeterminate product, we try to choose the option that leads to the 
simpler limit.

) Note: In solving this example, another possible option would have been to write 

Example:

   
   

           

If             and             , then the limit

is called an indeterminate form of type    . Again there is a contest between  and  . Will the 
answer be  ( wins) or will it be   ( wins) or will the compromise on a finite number? To find 
out, we try to convert the difference into a quotient (for instance, by using a common 
denominator or rationalization, or factoring out a common factor) so that we have an 

indeterminate form of type 
 

 
 or 

 

 
  .

Example:

Indeterminate differences (   )
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Compute    
   

 

 
   

            .

   
   

 
 
   

                
   

 
 
   

  
 

    
      

    

    
          

   
 
 
   

 

      

    
        

    
   

 
 
   

 

     

     
         

First notice that       and       as    
 

 
  

 
, so the limit is indeterminate. Here 

we use a common denominator:

Note that the use of l'Hospital's Rule is justified because         and       as 

   
 

 
  

 

Example:

Indeterminate powers (  ,   , and   )

Several indeterminate forms arise from the limit

   
   

          

                   and                               type   1.

                   and                               type   2.
                   and                               type   3.

let                     ,     then                   

Each of these three cases can be treated either by taking the natural logarithm:

                      

or by writing the function as an exponential:

(Recall that both of these methods were used in differentiating such functions.) In either method, 
we are led to the indeterminate product           , which is of type    .

Calculate                     .

              

First notice that as     , we have          , so the given limit is indeterminate. Let

                                     
Then 

   
    

       
    

           

    
                

    

      
                

     
           

So l'Hospital's Rule gives us

So far we have computed the limit of    , but what we want is the limit of  . To find this, 

Example:

   II. Limits And Continuity Page 3    



So far we have computed the limit of    , but what we want is the limit of  . To find this, 

we use the fact that       :

   
    

                 
    

     
    

       

Find         
 .

         
 
      

   
    

      
Use l'Hospital's:

   
    

      
    

          

Therefore

Example:
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The derivative of a function  at a number  , denoted by      , is

if this limit exists.

If we write      , then      and  approaches 0 if and only if  approaches  . Therefore, an 
equivalent way of  stating this definition is 

         
   

         

   
           

Find the derivative of the function             at the number  .

    
   

                         

 
                                         

   

         

 
             

    
   

             

          
   

           

 
                  

   

                           

 
                                    

Example:

3.1 - Definition of a Derivative and Alternate Limit Form of the 
Derivative
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Constant function (      )

         
   

           

 
                  

   

   

 
         

   
   

 

  
        

Therefore 

Power functions (       )

If    ,       is the line    which has a slope of  , therefore

 

  
        

For    we find the derivative of        as follows:

         
   

           

 
                  

   

         

 
            

    
   

                        

 
                                    

   

                  

 
                       

    
   

                      

Thus, if  is a positive integer,

 

  
             

The formula                                     can easily be 
verified. 

         
   

         

   
               

   

     

   
       

    
   

                         

                              

If        , then

Proof of the power rule

Therefore, if  is any real number, 

 

  
             

Constant multiple rule

3.2 - Basic Derivative Rules
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Constant multiple rule

If  is a constant and  is differentiable, then

 

  
            

 

  
       

Let           . Then

         
   

           

 
                  

   

             

 
                

    
   

  
           

 
                    

   

           

 
                     

Proof

If  and  are both differentiable, then

 

  
               

 

  
        

 

  
       

Let               . Then

         
   

           

 
                  

   

                           

 
                                 

    
   

 
           

 
               

           

 
               

    
   

           

 
                  

   

           

 
                          

Proof

The sum rule can be extended to the sum of any number of functions.

Sum rule

If  and  are both differentiable, then

 

  
               

 

  
        

 

  
       

Difference rule

Exponential functions (       )

         
   

           

 
                  

   

       

 
             

   

       

 
             

   

        

 
          

as the factor   doesn't depend on  , 
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Notice that the limit is the value of the derivative of  at 0, that is,

Therefore, if the exponential function        is differentiable at 0, then it is differentiable 
everywhere and

             

           
or

From this, we can arrive at the following definition of  

 is the number such that       
    

 
      

 

  
          

Natural exponential function

Find      

                                                                                                  (a)

                                                                                                  (b)

     
 

 
                                                                                            

 

  
        

  

    (c)

                                                                                                 
 

         (d)

                                                                                                 (e)

                                                                        (f)

                                                                                             (g)

                                                                                          (h)

Examples:

 

  
                  

 

  
              

 

  
         

If  and  are both differentiable, then

Product rule
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        , find      

      
 

  
          

 

  
          

 

  
                       

Example:

Suppose that  and  are both differentiable functions. If we make the assumption that      
 

 
 

is differentiable, then it is not difficult to find a formula for   in terms of   and   .

Since      
    

    
   , we can write              and apply the product rule:

                         

Solving this equation for      , we get

      
             

    
                

     
    
    
         

    
                

                   

       
                    

 
    

    
     

 

 
                   

       
                    

 

  
    

    

    
      

                   

       
                    

Therefore

Let   
      

    
      .

   
      

 
  
                    

 
  
         

       
                                            

 
                          

       
                                

 
                            

       
                                     

 
                 

       
                        

Then

Example:

Quotient rule
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Using the known limits       
    

 
     and       

      

 
        , we can get the derivative of 

         .

         
   

           

 
                  

   

               

 
                 

    
   

                      

 
                              

   
 
             

 
                

        

 
          

    
   

      
      

 
               

    

 
      

    
   

        
   

        

 
              

   
        

   

    

 
    

                       

 

  
              

Therefore

Differentiate         .

  

  
      

 

  
              

 

  
                     

Example:

 

  
               

Using similar methods, we arrive at

While the tangent function can also be differentiated by using the deffinition of a derivative, it is 
easier to use the quotient rule:

 

  
          

 

  
    

    

    
       

    
 
  
              

 
  
         

     
                            

 
                     

     
                          

           

     
              

 

     
            

 

  
               

Therefore

Other trigonometric derivatives

 

  
                  

 

  
                   

Trigonometric functions
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Differentiate      
    

      
      .

      
        

 
  
              

 
  
           

         
                                     

 
                           

         
                                

 
                      

         
                         

 
            

       
               

Example:

Inverse trigonometric functions (using implicit differentiations)

        means       and  
 

 
    

 

 
 

    
  

  
            or          

  

  
   

 

    
    

Differentiating         with respect to  , we obtain

Now       , since  
 

 
    

 

 
 , so

             
          

      
       

  

  
    

 

    
      

 

                   

 

  
            

 

                   

Therefore

The arctangent function is differentiate in a similar way. If         , then       . 
Differentiating this implicitly with respect to  , we have

     
  

  
     

  

  
    

 

     
       

 

       
          

 

    
      

 

  
            

 

    
      

Other inverse trigonometric derivatives
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Other inverse trigonometric derivatives

 

  
            

  

                   

 

  
            

 

      
               

 

  
            

  

      
               

 

  
            

  

    
      

Differentiate   
 

      
     .

  

  
    

 

  
                          

 

  
            

  

                                     

Example:

Other functions

 

  
         

 

 
  

   III. Derivatives Page 7    



                   

If  and  are both differentiable and        is the composite function defined by             , 

then  is differentiable and   is given by

In Leibniz notation, if       and       are both differentiable functions, then

  

  
    

  

  
   

  

  
   

Differentiate           
       

.

          

         

      
 

 
   

 

 
           and                 

                    
 

      
                   

 

     
              

Example:

 

  
             

  

  
   

If  is any real number and       is differentiable, then

 

  
                           

Alternatively, 

Find      if               

                                   

Example:

The power rule combined with the chain rule

3.3 - Chain Rule
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If we substitute       and       in the equation       , we get

                              

and so, if  ,  , and  are differentiable, the chain rule gives

If        , we can solve for      :

      
     

     
     

Since the slope of the tangent to the curve       at         is      , this enables us to find 

tangents to parametric curves without having to eliminate the parameter.

  

  
    

  
  
   

  
  
   
   if   

  
     

It can be seen from this equation that the curve has a horizontal tangent when 
  

  
    (provided that 

  

  
    ) and it has a vertical tangent when 

  

  
    (provided that 

  

  
    ). 

The second derivative can be found by replacing  by 
  

  
  :

   

       
 

  
    

  

  
     

 
     

  
      

  
     

       

Find 
  

  
  and 

   

      for the cycloid                        .

  

  
    

  
  
   

  
  
   
    

     

         
           

    

      
        

In order to find 
   

      , we first compute

 

  
    

  

  
     

 

  
    

    

      
          

                     

         
                         

      

         
          

  
 

      
        

   

       

 
      

  
      

  
     

        
 

 
              

         
            

 

          
           

Then

Example:

3.4 - Parametric Form of 1st and 2nd Derivatives
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To find the tangent line to a polar curve       we regard  as a parameter and write its parametric 
equations as 

  

  
    

  
  
   

  
  
   
    

  
  
             

  
  
             
               

The, using the method for finding slopes of parametric curves, we have

  

  
                 if           

  

  
    

We find horizontal tangents by finding the points where 
  

  
    (provided that 

  

  
    ), and vertical 

tangents where 
  

  
    (provided that 

  

  
    ). If we are looking for tangents at the pole, then    and  

this equation simplifies to

Find 
  

  
  for the cardiod         .

 
             

                 
                    

  

  
    

  
  
             

  
  
             
                

                     

                     
                          

             

             
                

Example:

3.5 - Slope in Polar Form
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Implicit differentiation

When given a function involving  and  , finding  in terms of  in order to take the derivative in 
not necessary because the method of implicit differentiation can be used. This consists of 

differentiating both sides with respect to  , and then solving the resulting equation for   or 
  

  
  .

If         , find 
  

  
  .

 

  
           

 

  
       

 

  
        

 

  
         

Example:

Remembering that  is a function of  , and using the chain rule, we have

 

  
        

 

  
       

  

  
      

  

  
   

     
  

  
     

Thus

  

  
    

   

  
      

 

 
  

Now we solve for 
  

  
  

If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing 
and their rates of increas are related to each other. But it is much easier to measure directly the 
rate of increase of the volume than the rate on increase of the radius.
In a related rates problem the idea is to compute the rate of change of one quantity in terms of 
the rate of change of another quantity (which may be more easily measured). The procedure is to 
find an equation that relates the two quantities and then use the chaine rule to differentiate both 
sides with respect to time.

Air is being pumped into a balloon so that its volume increases at a rate of 100 cm3/s. How 
fast is the radius of the balloon increasing when the diamter is 50 cm?

We start by indentifying two things:

the rate of increase of the volume of air is 100 cm3/s
the given infomation:

Example:

Related rates strategy

3.6 - Implicit Differentiation and Related Rates Strategy
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the rate of increase of the radius when the diameter is 50 cm
and the unknown:

Let  be the volume of the balloon and let  be its radius.
In order to express these quantities mathmatically we introduce some suggestive notation:

Given:                     
  

  
      cm3/s

Unknown:             
  

  
         when     cm

The key thing to remember is that rates of change are derivatives. In this problem, the 
volume and the radius are both functions of the time  . The rate of increase of the volume 

with respect to time is the derivative 
  

  
  and the rate of increase of the radius is 

  

  
  . We can 

therefore restate the given and the unknown as follows:

We must relate  and  by the formula for the volume of a sphere:

  
 

 
     

Then differentiate both sides

  

  
    

  

  
   

  

  
        

  

  
   

  

  
    

 

    
     

  

  
   

and solve for the unknown quantity:

If we put     and 
  

  
      in this equation, we obtain

  

  
    

 

       
           

 

   
    

The radius of the balloon is increasing at the rate of 
 

   
   cm/s
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The calculation of derivatives of complicated functions involving products, quotients, or powers can 
often be simplified by taking logarithms. This is called logarithmic differentiation.

Take natural logarithms of both sides of an equation       and use the laws of logarithms to 
simplify.

1.

Differentiate implicitly with respect to  .2.

Solve the resulting equation for   or 
  

  
  .3.

If       for some values of  , then       is not defined, but we can write           

Steps in logarithmic differentiation:

Prove the general version of the power rule.

                                 

Let     and use logarithmic differentiation:

  

 
   

 

 
  

Therefore

    
 

 
    

  

 
         

Hence

Proof

Example:

3.7 - Logarithmic Differentiation
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The normal line to a curve  at point  is the line that passes through  and is perpendicular to the 
tangent line of  at  .

Find the equation of a normal line to the parabola       at the point       .

  

  
                at                 

  

  
           

perpendicular slope  
 

 
 

First, we find the slope of  at       :

    
 

 
       

So, the normal line equation is:

Example:

3.8 - Equation of a Normal Line
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Suppose  is a quantity that depends on another quantity  . Thus,  is a function of  and we write       . If  
changes from   to   , the change in  (also called the increment of  ) is

and the corresponding change in  is:

              

  

  
    

           

     
            

The difference quotient

is called the average rate of change of  with respect to  over the interval        and can be interpreted as the slope 
of the secant line   in the figure below.

  

  

 

 

    
0

           

           

average rate of change     

instantaneous rate of change  slope of tangent at  

We consider the average rate of change over smaller and smaller intervals by letting      and 
therefore letting     .The limit of these average rates is called the instantaneous rate of change of  
with respect to  at     , which is interpreted as the slope of the tangent to the curve       at 

           .

instantaneous rate of change         
  

  
           

           

     
         

Temperature readings  (in degrees Celsius) were recorded every hour starting at midnight. The 
time  is measured in hours from midnight.

Find the average rate of change with respect to time from noon to 1 P.M.(a)
Estimate the instantaneous rate of change at noon.(b)

Example:

3.9 - Instantaneous Rate of Change vs. Average Rate of Change
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Estimate the instantaneous rate of change at noon.(b)

  

  
    

           

     
              

         

 
                 (a)

We use the data given to sketch a smooth curve that approximates the graph of the temperature 
functions, then draw the tangent at point  where     . Then, we get

  

  
    

    

   
        

Therefore, the instantaneous rate of change of temperature with respect to time at noon is about 
1.9 /h

(b)
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Increasing/decreasing test

If        on an interval, then  is increasing on that interval(a)
If        on an interval, then  is decreasing on that interval(b)

                        

Let     be a differentiable function defined on      . Let   and   be any two numbers in the interval with  
     . We have to show that            (given that        . By the mean value theorem, there is a 
number  between   and   such that 

                          or                        

Now        by assumption and        because      . Thus, the right side of the equation is 
positive, so 

Showing that  is increasing.

Proof

If the graph of  lies above all tangents on the interval  , then it is called concave upward on  . If the graph of  
lies below all tangents on  , then it is called concave upward on  .

If         for all  in  , the graph of f is concave up on  (a)
If         for all  in  , the graph of f is concave down on  (b)

Concavity test

Concavity

Find the intervals for increasing/decreasing, and for concavity of              

         
             
    

              

    is increasing on        and      
    is decreasing on       

   
           

        on       , therefore, the graph of     is concave down on        

        on      , therefore, the graph of     is concave up on       

Example:

   

   

     

      

 

  

3.10 - Relationship Between the Increasing and Decreasing 
Behavior and Concavity of f and the Signs of f ' and f ''
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A point  on a curve is called a point of inflection if the curve changes from concave upward to concave downward, or 
vise versa, at  

Find the  values for the points of inflection for the graph of            .

          
     

              

                 

There is an inflection point where    because       changes from positive to negative so the graph of     
changes from concave up to concave down, and there is an inflection point where    because       changes 
from negative to positive so the graph of     changes from concave down to concave up.

Example:

   

  

      

3.11 - Points of Inflection
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Let  be a function that satisfies the following hypotheses:

 is continuous on the closed interval      .1.
 is differentiable on the open interval      .2.

Then there is a number  in      such that

      
         

   
           

                    

or, equivalently,

         , find  on      

 is continuous on      ( is a ploynomial)1.

           

 is differentiable on      2.

Then, by the mean value theorem, there exists a number  in      such that 

                    
              
       
     

   
 

 
  

   
 

  
      

as  can only lie in      ,   
 

  
     is the only valid answer

Example:

3.12 - Mean Value Theorem
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Let  be a function that satisfies the following three hypotheses:

 is continuous on the closed interval      .1.
 is differentiable on the open interval      .2.
         3.

Then there is a number  in      such that        .

There are three cases:

Then        , so the number  can be taken to be any number in      .
Case 1:       , a constant

By the extreme value theorem,  has a maximum value somewhere in      . Since      
    , it must attain this maximum value at a number  in the open interval      . Then  
has a local maximum at  and, by hypothesis 2,  is differentiable at  . Therefore,        
by Fermat's theorem.

Case 2:          for some  in      

By the extreme value theorem,  has a minimum value in      and, since          , it 
attains this minimum value at a number  in      . Again        by Fermat's theorem.

Case 3:          for some  in      

Proof

Show that there is a number  on      for             .

    is continuous on      (polynomial function)1.
    is differentiable on      2.
      and       , so          3.

Therefore, by Rolle's theorem, there is a number  on      such that        

Example:

3.13 - Rolle's Theorem
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If   changes from positive to negative at  , then  has a local maximum at  .a)
If   changes from negative to positive at  , then  has a local minimum at  .b)
If   does not change sign (that is,   is positive on both side of  or negative on both sides), then  has no 
local maximum of minimum at  .

c)

Suppose  is a critical number of a continuous function  .
First derivative test:

If        and         , then  has a local minimum at  .a)
If        and         , then  has a local maximum at  .b)

Suppose    is continuous near  .
Second derivative test:

Find the local maximums and/or minimums of              with both the 1st and 2nd derivative tests.

         
     

                      

  changes from positive to negative at    , so     has 
a local maximum at    .
  changes from negative to positive at    , so     has 
a local minimum at    .

           

                  , so     has a maximum at    .
                 , so     has a minimum at    .

Using the critical numbers      from      

Example:

  

   

     

3.14 - 1st and 2nd Derivative Tests
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Find the values of  at the critical numbers of  in      .1.
Find the values of  at the end points of the interval.2.
The largest values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the 
absolute minimum value.

3.

To find absolute maximum and minimum values of a continuous function  on a closed interval      :
The closed interval method

                              
 

 
      

Find the absolute extrema values

             
                      

          both exist in the closed interval   
 

 
    .

     

 
 

 
  

endpoint  

 
  

 critical #  

 critical #   

 endpoint   

absolute minimum at        
absolute maximum at        

Example:

Understand the problem: The first step is to read the problem carefully until it is clearly understood. Ask 
yourself: What is the unknown? What are the given quantities? What are the given conditions?

1.

Draw a diagram: In most problems it is useful to draw a diagram and identify the given and required 
quantities on the diagram.

2.

Introduce notation: Assign a symbol to the quantity that is to be maximized or minimized (lets call it  
now). Also select symbols ( ,  ,  ,  ,  ,  ) for other unknown quantities and label the diagram with these 
symbols. It may help to use initials as suggestive symbols - for example,  for area,  for height,  for time.

3.

Express  in terms of some of the other symbols from Step 3.4.
If  has been expressed as a function of more than one variable in Step 4, use the given information to find 
relationships (in the form of equations) among these variables. Then use these equations to eliminate all but 
one of the variables in the expression for  . Thus,  will be expressed as a function of one variable  , say, 
      . Write the domain of this function.

5.

Find the absolute maximum or minimum value of  .6.

Steps in solving optimization problems
Optimization Strategy

3.15 - Steps to Finding Absolute Extrema on an Interval & 
Optimization Strategy
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A farmer has     ft of fencing and wants to fence off a rectangular field that borders a straight river. He 
needs no fence along the river. What are the dimensions of the field that has the largest area.

The figure to the right illustrates the general case. We wish to 
maximize the area  of the rectangle. Let  and  be the depth
and width of the of the rectangle (in feet). Then we express  in 

    
terms of  and  :

We want to express  as a function of just one variable, so we
eliminate  by expressing it in terms of  . To do this we use
the given information that the total length of the fencing is

         
         

    ft. Thus

                      
Which gives

Note that         (otherwise     ). So the function we wish to maximize is

                                     

             

     

 endpoint  

   critical #       

    endpoint  

             

      

So the dimensions of the field with the largest area is    x    .

Example:
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To find horizontal and vertical tangents of a parametric equation with       and       , we look at the 1st

derivative for parametric equations:

  

  
    

  
  
   

  
  
   
   if   

  
     

It can be seen from this equation that the curve has a horizontal tangent when 
  

  
    (provided that 

  

  
    ) and it has 

a vertical tangent when 
  

  
    (provided that 

  

  
    ). In the event that both 

  

  
    and  

  

  
    , then l'Hospital's rule 

must be applied to simplify the function and obtain a limit. If the limit is euqal to  , then it is a horizontal tangent. If the 
limit does not exist, it is a vertical tangent.

To find horizontal and vertical tangents of a polar equation with       , we look at the 1st derivative for polar 
equations:

  

  
    

  
  
   

  
  
   
    

  
  
             

  
  
             
               

  

  
                 if           

  

  
    

We find horizontal tangents by finding the points where 
  

  
    (provided that 

  

  
    ), and vertical tangents where 

  

  
    (provided that 

  

  
    ). If we are looking for tangents at the pole, then    and  this equation simplifies to

                    

  

  
         

  

  
           

no horizontal tangents because 
  

  
       

   
 

 
  

vertical tangents occur at   
 

  
     and    

 

  
     

Example:

  

  
      

   
 

  
      

  

  
    

  
  
   

  
  
   
    

  

     
       

3.16 - Horizontal and Vertical Tangents in Parametric and Polar 
Form

   III. Derivatives Page 1    



A position function states the position of a particle at time  (         ).
The derivative of the position function is the velocity function (          ).
The second derivative of the position function, or the derivative of the velocity function is the 
acceleration function (                 )

A particle moves along a vertical line so that its coordinate at time  is                     
 .

           

Velocity function (  )

       

Acceleration function (     )

Example:

3.17 - Relationship Between Position, Velocity, and Acceleration
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Suppose that a particle moves through space so that its position vector at time  is     . For small values 
of  , the vector

        
   

           

 
                   

approximates the direction of the particle moving along the curve     . Its magnitude measures the size 
of the displacement vector per unit time. The vecotr gives the average velocity over a time interval of 
length  and its limit is the velocity vector     at time  :

Thus the velocity vector is also the tangent vector and points in the direction of the tangent line.

As in the case of one-dimensional movement, the acceleration vector is defined as the derivative of the 
velocity vector:

                 

                

                   

                 

Example:

3.18 - Velocity and Acceleration Vector
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The speed of a particle at time  is the magnitude of the velocity, that is,       . This is appropriate 
because

               
  

  
   rate of change of distance with respect to time

                
Find the speed at    .

             

                    
              

         
          

            
             

        

   

Example:

3.19 - Speed and How it is Calculated
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It is impossible to solve most differential equations, and even harder to graph them. Given the equation       , it 
can be deduced that the slope at any point      on the graph is equal to the sum of the  and  coordinates of that 
point.

To find the slopes, or   , plug in the  and  coordinates for the given point. Then, at the point      graph the slope of 
the line at that specific point.

These line segments on a graph are called a directional field or a slope field.

Sketch the slope field for           and the line with an initial value of        .

               

           

slope            

Example:

slope field approximation and 
solution curve for        

3.20 - Slope Fields
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The idea of directional fields can be used to find numerical approximations to solutions of differential 
equations.
Though Euler's method does not give the exact solution to an initial-value problem, it gives an 
approximation using the general first-order initial-value problem.

               

              
Similarly

                    
In general,

For the general first-order initial-value problem                   , our aim is to find approximate 
values for the solution at equally spaced number   ,              ,              ,  , where 
 is the step size. The differential equation tells us that the slope at        is            , so the 
approximate value of the solution when     is

Smaller values for  (or   ) give approximations closer to the actual value.

                                  

                              

                                    

                                        

Estimate       for:

so,             

Example:

3.21 - Euler's method of Numerical Solutions
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and the approximation

The idea is that it might be easy to calculate a value     of a function, but difficult (or even impossible) 
to compute nearby values of  . So, we settle for the easily computed values of the linear function  

whose graph is the tangent line of  at         . In other words, we use the tangent line at         as 

an approximation to the curve       when  is near  . An equation of this tangent line is

                    

is called the linear approximation or tangent line approximation of  at  . The linear function whose 
graph is this tangent line, that is,

is called the linearization of  at  .

Find the linearization of the function          
      

at    and use it to approximate the 

numbers      
     

and      
     

.

      
 

 
       

  
 
    

 

     
             

                                    
 

 
  

                       
 

 
        

 

 
   

 

 
  

     
      

 
 

 
   

 

 
  

     
     

 
 

 
   

    

 
          

So,

     
     

 
 

 
   

    

 
           

and

Example:

3.22 - Local Linearization
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If       where  is a differentiable function, then the differential   is an independent variable; that is   can be 
given the value of any real number. The differential   is then defined in terms of   by the equation

          

Therefore,   is a dependent variable; it depends on the value of  and   .

      

  

 

 

    

 

 

     

  

  

The slope of the tangent line   is the derivative      . Thus, the directed distance from  to  is 
          . Therefore,   represents the amount that the tangent line rises of falls (the change in 
the linearization), whereas   represents the amount that the curve       rises or falls when  
changes by an amount   .

Compare the values of   and   if                  and  changes from  to     .

                   

                                          

                        

                                              

Example:

3.23 - Definition of a Differential
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A summation taken to a limit is used to find the area under a curve.

The area  of the region  that lies under the graph of the continuous function  is the limit of the sum 
of the areas of approximating rectangles:

     
   

      
   

                           

     
   

      
   

                             

Since we are assuming that  is continuous, it can be prooved that the limit always exists. It can also be 
shown that we get the same value if we use left endpoints:

     
   

     
         

           
     

Or we could take the height of the  th rectangle to be the value of  at any number   
 in the  th 

subinterval          . We call the numbers   
 ,   

 ,  ,   
 the sample points. So a more general exression 

for the area of  is 

        

 

   

                          

Which can be writen in sigma notation as:

which is called a Reimann sum. Sample points can be chosen from the left, right, or midpoints.

Given the following table of a function, find the sum using left, right, and midpoints.

              

                         

                                                  

The left endpoints are:  ,   ,   ,   ,   ,   . So

The right endpoints are   ,   ,   ,   ,   ,   . So

                                                  

For midpoints, we choose every other point (  ,   ,   ). So

                                

Example:

4.1 - Riemann Sums
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When evaluating a definite integral, here are some sums to help the evaluation and simplification 
process.

  

 

   

 
      

 
        

   
 

   

 
            

 
               

   
 

   

  
      

 
         

 

The remaining rules are simple rules for working with sigma notation:

  

 

   

   

    

 

   

     

 

   

        

 

   

    

 

   

    

 

   

        

 

   

    

 

   

    

 

   

Find the Reimann sum of           over      .

   
   

 
      

 

 
                    

  

 
  

   
   

        

 

   

    
   

 

 
     

  

 
   

 

   
  

 
    

 

   

   
   

 

 
    

  

  
      

  

 
     

 

   

    
   

 
  

  
      

 

   

 
  

  
     

 

   

     
   

 
  

  
    

      

 
         

 

 
  

 
   

      

 
         

    
   

 
  

 
      

 

 
   

 

      
 

 
     

  

 
            

Example:

4.2 - Summation Formulas
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where    
   

 
   and         .

Suppose              on      . If   and   are the errors in the Trapezoidal and Midpoint 
Rules, then

     
       

    
         and      

       

    
         

Error bound for Trapezoidal Rule and Midpoint Rule:

Use the Trapezoidal Rule to approximate   
 

 
    

 

 
with    .

                                                           
   

 
        

 
 

  
    

 

 
   

 

   
    

 

   
    

 

   
    

 

   
    

 

 
            

   
   

 
                                              

Example:

4.3 - Trapezoidal Rule
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 is a continuous function defined for      . We divide the interval      into  subintervals 

of equal width (   
   

 
   ). We let   (which equals  ),   ,   ,  ,   (which equals  ) be the 

endpoints of the subintervals. Sample points are chosen so that   lies in the  th subinterval 
         . Then the definite integral of  from  to  is

       
 

 

    
   

       

 

   

Definition of a definite limit

       
 

 

         
 

 

       
 

 

  

Assuming  and  are continuous functions and  is any constant:

    
 

 

       

        
 

 

         
 

 

              
 

 

        
 

 

        
 

 

              
 

 

        
 

 

        
 

 

Basic properties

Evaluate           
 

 
.

          
 

 

     
 

 

       
 

 

  
 

 

         

    
 

 

   
 

 
      

 

 

   
 

 
     

          
 

 

     
 

 

       
 

 

      

So

Example:

4.4 - Basic Properties of Definite Integrals
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If  is continuous on      , then the function  defined by

is continuous on      and differentiable on      , and           .

Find the derivative of the function                   
  

 

 
.

           
       

Since                  
is continuous, Part 1 of the Fundamental Theorem of Calculus gives

Example:

4.5 - Fundamental Theorem of Calculus (Part 1)
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If  is continuous on      , then

       
 

 

          

where  is any antiderivative of  , that is, a function such that     .

Evaluate      
 

 
.

   
 

 

          

     
 

 

               

Example:

4.6 - Fundamental Theorem of Calculus (Part 2)
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     (a)

     
 

 

 
  

   
     (b)

 
 

     
         
 

 

 
 

 
        

 

 
     (c)

 
 

                        
 

 

       
 

 
     (d)

Example:

4.7 - Integration Rules
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If       is a differentiable function whose range is an interval  and  is continuous on  , then

               
 

 

        
 

 

Note: For definite integrals, the limits must be converted to  -limits.

               
 

 

        
    

    

Find               
 

 
.

              
 

 

 
 

 
         

 

 

 
 

 
             

Example:

      
        

4.8 - Integration by Substitution
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The product rule states that if  and  are differentiable functions, then

                      
 

 

         

In notation of indefinite integrals:

This can be rearranged to:

            
 

 

                      
 

 

Find         
 

 
.1.

        
 

 

                
 

 

              

      
 

 

        
 

 
    

 

 

         

Find       
 

 
.2.

Find        
 

 
.3.

       
 

 

                

Example:

                                         
                                       

                                       

   
 

 
                                       

Sign     

  
     

 

     

     

    

    

4.9 - Integration by Parts
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To integrate any rational  function (a ratio of two polynomials) by expressing it as a sum of simpler fractions, called 
partial fractions, that we already know how to integrate.

If the degree of the numerator is higher than that of the denominator, then perform long division.1.
Factor the denominator.2.

Split the rational function 
    

    
     into a sum of partial fractions in the form3.

 

       
        

or

    

           
              

Case 1: The denominator     is a product of distinct linear factors.
Case 2:     is a product of linear factors, some of which are repeated.
Case 3:     contains irreducible quadratic factors, none of which are repeated.
Case 4:     contains a repeated irreducible quadratic factor.

 
 

      
           
 

 

  
 

   
      

 

   
       

 

 

   
 

 
   

 

   
       

 

 
   

 

   
         

 

 

 
 

 
          

 

 
           

      
   

   
      

      
 

  

Example:

              1

     
  

 

 
  

       
   

 

 
  

4.10 - Integration of Simple Partial Fractions
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An integral is called convergent if its corresponding limit exists as a finite number and divergent if it 
does not exist.

If        
 

 
exists for every number    , then(a)

       
 

 

    
   

       
 

 

provided that this limit converges.

If        
 

 
exists for every number    , then(b)

       
 

 

    
   

       
 

 

provided that this limit converges.

If both        
 

 
and        

 

  
are convergent, then we define(c)

       
 

  

        
 

  

        
 

 

Type 1: Infinite Integrals

In part (c) and real number  can be used.

 
 

 
    

 

 

   
   

 
 

 
    

 

 

    
   

       
     

   
       

   
     

Is the following limit convergent or divergent?

The integral diverges because the limit   

Example:

If  is continuous on      and is discontinuous at  , then(a)

       
 

 

    
    

       
 

 

if this limit converges.

If  is continuous on    and is discontinuous at  , then(b)

Type 2: Discontinuous Integrands

4.11 - Improper Integrals
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If  is continuous on      and is discontinuous at  , then(b)

       
 

 

    
    

       
 

 

if this limit converges.

       
 

 

        
 

 

        
 

 

If  has a discontinuity at  , where      , and both        
 

 
and        

 

 
are convergent, 

then we define

(c)

Find  
 

    
          

 

 
.

    
    

 
 

   
       

 

 

    
    

     
      

  
 

 
    

    
    

   
     

      
     

   

This integral converges.

Find  
 

   
     

 

 
.

  
 

   
       

 

 

  
 

   
       

 

 

 
 

   
       

 

 

    
    

 
 

   
       

 

 

    
    

          
     

    
              

    
    

          

This integral diverges.

Example:
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If the power of cosine is odd (      ), save one cosine factor and use              to express the 
remaining factors in terms of sine:

(a)

                
 

 

                     
 

 

                       
 

 

Then substitute       .

If the power of sine is odd (      ), save one sine factor and use              to express the 
remaining factors in terms of cosine:

(b)

                
 

 

                     
 

 

                       
 

 

Then substitute       . [Note that if the powers of both sine and cosine are odd, either (a) or (b) can be used.]

If the powers of both sine and cosine are even, use the half-angle identities(c)

      
 

 
                                  

 

 
           

         
 

 
       

It is sometimes helpful to use the identity

Strategy for evaluating              
 

 
:

             
 

 

                  
 

 

                       
 

 

              
 

 

                
 

 

   
  

 
    

   

 
    

  

 
        

     

 
       

      

 
        

     

 
        

        
 

 

            
 

 

   
       

 
          

 

  
 

 

 
 

 
                      

 

 

 
 

 
             

 

 
              

 

 

Example:

      

          

4.12 - Integration of Powers of sin and cos
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We can use the idea of the Riemann sum which finds the area under a curve to find the area between curves:

     
   

      
       

   

 

   

                
 

 

We recognize this limit as the definite integral of    , so the area  of the region bounded by the curves       and  
      , and the lines    and    , where  and  are continuous and          for all  in      is 

Find the area of the region bounded above by     , bounded below by    , and bounded on the sides by   
 and    .

           
 

 

    
 

 
     

 

 

   
 

 
          

Example:

    

   

   

 

 

  

4.13 - Finding Area of a Region
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To find the area of a region bounded by a polar equation, we need to use the formula for the area of a sector of a circle

  
 

 
     

     
   

 
 

 
       

       

 

   

An Riemann sum for the total area bounded by a polar curve is

   
 

 
           

 

 

Therefore, the formula for the area  of a polar region  is

   
 

 
      

 

 

Which is often writen as

with the underdtanding that       .

Find the area inclosed by one loop of the four-leaved rose        .

   
 

 
      

 
 
  

 
 
 
  

 
 

 
           

 
 
  

 
 
 
  

          

 
 
  

 

  
 

 
             

 
 
  

 

 
 

 
     

 

 
        

 

 
 
  

 
 

 
  

Example:

   
 

 
  

  
 

 
  

4.14 - Area in Polar Coordinates
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It is easy to calculate the average value of finitely many numbers   ,   ,  ,   :

     
    

         
  

 
                

The same idea can be applied when finding the average value of a function. We choose sample points in 
the function and use the formula:

    
         

  

   
  

     
                 

 

   
          

           
     

 
 

   
          

    

 

   

Since    
   

 
   , we can write   

   

  
   and the average value becomes

Therefore, we define the average value of a function as

     
 

   
            

 

 

Find the average value of the function          on the interval       .

     
 

   
            

 

 

 
 

      
                 

 

  

 
 

 
     

  

 
    

  

 

  

Example:

4.15 - Finding the Average Value of a Function
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We start by intersecting  with a plane and obtaining a plane region that is called a cross-section of  .

Let  be a solid that likes between    and    . If the cross-sectional area of  in the plane   , through  and 
perpendicular to the  -axis, is     , where  is a continuous function, then the volume of  is

     
   

     
    

 

   

        
 

 

Definition of volume

       from  to  

                 

The thickness of the approximating cylinder is   . Therefore, the volume is

         
 

 

      
 

 

  
  

 
    

 

 

 
 

 
  

Example:

  

     

       

generated solid

4.16 - Finding Volumes by Known Cross Section
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Uses the cross-section theorem with circular cross-sections:

              
 

 

Horizontal axis

              
 

 

Vertical axis

Disc Method:

Modified version of the disc method to use when there is a hole, a space between the axis, in the generated solid.

              
 

 

Horizontal axis

              
 

 

Vertical axis

Where  is the outer function and  is the inner function.

Washer Method:

Find the volume of the solid generated by revolving        about the  -axis and about    from  to  .

               
 

 

       
 

 

  
  

 
    

 

 

 
  

 
    

Disc method
About the  -axis:

Example:

       

  

4.17 - Finding Volumes by Disc/Washer Method
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Washer method

                      
 

 

        

About the line    :

hole
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   the radius of the inside function
Let    the radius of the outside function

     
      

  

      
    

  

                 

       
     

 
       

So

Therefore, the volume of a solid generated by revolving the curve       about the  -axis from  to  is

            
 

 

                          

Revolving the curve       about the  -axis

            
 

 

                          

A shell is a hollow cylinder. Instead of making slices, the volume of a solid can be found by finding the sum of a group of 
shells.

Find the volume of the solid generated by revolving the region bounded by         and    about the  -
axis.

Find the intersection:

       

        

     

               
 

 

      

Example:

Sample point

       

4.18 - Finding Volumes by the Shell Method
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The Fundamental Theorem of Calculus can be formulated as:

        
 

 

          

The integral of a rate of change is the total change:
The Total Change Theorem:

 

  

  

  

  

 

   

  

The figure shows a velocity curve, below is displacement vs. distance interpretation.

       
  

  

         

Displacement:

         
  

  

        
  

  

        
  

  

        
  

  

         

Distance:

A particle moves along a curve so that its velocity at time  is            . Find the particles displacement 
and the total distance travel by it on      .

       
 

 

            
 

 

 
  

 
   

  

 
      

 

 

  
  

 
   

  

 
        

 

 
   

 

 
       

 

 
  

The particle moved    meters to the left.

Displacement

    
 

 

         
 

 

Total distance

Example:

  

4.19 - Finding Distance Traveled by a Particle Along a Line
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Now we need to deal with the absolute value

                   

   (  is outside the interval)

           
 

 

             
 

 

            
 

 

             
 

 

            
 

 

   
  

 
   

  

 
      

 

 

  
  

 
   

  

 
      

 

 

 
  

 
         

We negate the interval on      :

The particle traveled      meters.
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A differential equation is an equation that contains an unknown function and one or more of its derivatives. The order
of a differential equation is the order of the highest derivative that occurs in the equation. In general the independent 
variable doesn't have to represent time. For example, when we consider the differential equation

     

it is understood that  is a function of  .

           

A function  is called a solution of a differential equation if the equation is satisfied when       and its derivatives 
are substituted into the equation. Thus,  is a solution of the previous equation if 

for all values of  in some interval.

Show that       is a solution to             .

      

         

         

            

                   

             

        

                        

Example:

When applying differential equations we are usually not interested in finding a family of solutions (the general solution) 
as we are in finding a solution that satisfies some additional requirement. In many physical problems we need to find the 
particular solution that satisfies the a condition of the form         . This is called an initial condition, and the 
problem of finding a solution of the differential equation that satisfies the initial condition is called an initial-value 
problem.

Geometrically, when we impose an inital condition, we look at the family of solution curves and pick out the one that 
passes through the point        . Physically, this corresponds to measuring the state of a system at time   and using 
the solution fo the inital-value problem to predict the future behavior of the system.

4.20 - Exponential Growth and Decay Model And Solving 
Differential Equations
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Find a solution of the differential equation    
 

 
       that satisfies the initial condition       . (The 

general solution is   
     

     
    ).

Substitute the values    and    into the equation:

  
     

     
        

   

   
     

        

  
 

 
  

Then solve for  

  
  

 
   
  

  
 
   
  

        
    

    
      

So, the solution is

Example:

  

  
            

A separable equation is a first-order differential equation in which the expression for 
  

  
  can be factored as a function of 

 and a function of  . In other words, it can be written in the form

  

  
    

    

    
    

The name separable comes from the cast that the expression on the right side can be "separated" into a function of  
and a function of  . Evidently, if       , we could write

where      
 

    
   . T solve this equation we rewrite it in the differential form

       
 

 

        
 

 

Write the equation in the form 
  

  
   

    

    
   .1.

Rearrange the equation into the form              .2.
Integrate both sides3.
Place the constant of integration on the  side(on the right).4.
Solve for  if possible.5.

Find the general solution of    
 

  
  .

  

  
    

 

  
  

   
 

 

  
 

  
    
 

 

Example:

In summary, the process for solving a separable differential equation is:
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It can be assumed that a population grows at a rate proportional to the size of the population:

  

  
      

In general if     is the value of a quantity  at time  and if the rate of change of  with respect to  is proportional to 

its size     at every  , then 
  

  
     where  is a constant. This equation is known as the law of natural growth when 

   and the law of natural decay when    ; it is also a separable differential equation.

Because it is a separable differential equation, we can solve for  .

  

  
      

 
  

 
   
 

 

     
 

 

          

               

      

          

where  (     or  ) is an arbitrary constant. To see the significance of  , we observe that

Therefore,  is the initial value of the function.

The solution to the initial-value problem

  

  
      

       

        
  

A village had a population of     in     and     in     . Assuming natural growth, what will the 
population be in     ?

      

 is years since     .

      

         

               

Example:

       
 
       
  

          

     people
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Radioactive substances decay at a rate proportional to the remaining mass. Therefore, the mass decays 
exponentially:

The half-life of Radium is     years. What is the mass of a   mg sample of radium after   years?

     mg

    

          

            

 

 
         

   
 

 
         

   
 
   
 

    
       

Example:

Radioactive decay

If an initial amount   is invested at an annual rate of   compounded  times a year, the amount after  
years is

       
 

 
   

  

If the interest in compounded continuously, then we take the limit as    .

   
   

     
 

 
   

  

    
  

$    is invested at an interest rate of   compounded (a)yearly, (b)monthly, and (c) continuously. 
After  years, how much money is there in the account?

         
   

 
    

    

         (a)

         
   

  
    

     

         (b)

                        (c)

Example:

Continuously compounded interest

Other separable differential equations
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A population often increases exponentially in its early stages but levels off eventually and approaches its 
carrying capacity because of limited resources. If     is the size of the population at time  , we assume 
that (when  is small)

This says that the growth rate is initially close to being proportional to size. In other words, the relative 
growth rate is almost constant when the population is small. But we also want to reflect the fact that 
the relative growth rate decreases as the population  increases and becomes negative if  ever 
exceeds its carrying capacity  , the maximum population that the environment is capable of sustaining 
in the long run. The simplest expression for the relative growth rate that incorporates these 
assumptions is

 

 
  
  

  
        

 

 
   

Multiplying by  we obtain the model for population growth known as the logistic differential equation:

  

  
         

 

 
   

  

  
         

 

 
   

 
  

    
 
    

         
 

 

     
 

 

we have

 

    
 
    

          
 

      
         

To evaluate the integral on the right side, we write

 

      
          

 

 
   

 

   
      

Using partial fractions, we get

 
 

 
   

 

   
      

 

 

       
 

 

                  

We can use this to rewrite the integral

This is a separable differential equation, so we can solve it explicitly. Since

4.21 - Logistic Growth Differential Equation and its Solution
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where       . Solving this for  we get

    
  

            

We find the value of  by putting    into the previous equation (
   

 
         ). If    , then 

    (the initial population), so

  
 

       
                                   

    
  

      

Thus, the solution to the logistic equation is

   
   

      

Using this expression for     , we see that

which is to be expected.

Find the solution to the initial-value problem:

  

  
           

 

   
                                  

What is the population in 1985? When will the population reach 450?

  
       

   
          

 

 
         

   

  
 
    

    
         

  
   

  
 
    

      
                     

    
   

  
 
    

    
         

Example:
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The population is 262 in     and will reach    in 1988 (near the end of the year).
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Rectangular

The procedure for defining arc length is very similar to the procedure we used for defining area 
and volume: We divide the curve into a large number of small parts, then find the approximate 
lengths of the small parts and added them. Finally, we take the limit as    .

The definition of arc length given by the limit is not very convenient for computational purposes, 
but we can derive an integral formula for  (arc length) in the case where  has a continuous 
derivative. (Such an  is called smooth because a small change in  produces a small change in 
     .]

              
            

  
 

 

If   is continuous on      , then the length of the curve              , is

Parametric

If a curve  is described by the parametric equations                      , where   

and   are continuous on      and  is traversed exactly once as  increases from  to  , then 
the length of  is

     
  

  
    

 

  
  

  
    

 
             

 

  
 

 

Polar

                                  

To find the length of a polar curve              , we regard  as a parameter and write 
the parametric equations of the curve as

  

  
    

  

  
              

  

  
    

  

      
             

Using the product rule and differentiating with respect to  we obtain

so, using              , we have

 
  

  
    

 

  
  

  
    

 

  
  

  
    

 

        
  

  
                   

  
  

  
    

 

        
  

  
                    

  
  

  
    

 

   

4.22 - Arc Length Formulas in Rectangular, Polar, and Parametric 
Form
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Assuming that   is continuous, we can use the arc length for parametric equations to write the 
arc length as

Therefore, the length of a curve with polar equation              , is

        
  

  
    

 
          

 

  
 

 

              
            

  
 

 

          
          

  
 

  

      

Find the arc length of     on       .(a)

              
            

  
 

 

            
            

  

 
 
  

 

     

Find the arc length of            on    
 

 
  .(b)

  

  
       

  

  
            

              
            

  
 

 

      

Find the arc length of the parametric curve                  .(c)

  

  
          

                       
                      

  
  

 

       

Find the arc length of the curve traced out by         .(d)

Example:

   IV. Integrals Page 2    



An important example of an infinite series is the geometric series

                              
                     

If    , then                . Since         doesn't exist, the geometric series 
diverges.

                   

If    , we have

                      
and

            

   
       

   
         

Subtracting these equations, we get

   
   

      
   

       

   
          

 

   
      

 

   
        

   
   

 

   
     

If       , we know that     as    , so

                 

 

   

Therefore, the geometric series

      
 

   

 
 

   
                          

is convergent if      and its sum is

   
  

  
   

 

   

    
 

 
   

  

   

     
 

 
     

Prove that the following series is convergent, and find its sum.

therefore, the series is convergent, and its sum is:

   
 

   
 
    

        
 

 
   
    

Example:

5.1 - Geometric Series and Sum of Geometric Series
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The p-series  
 

  
   

   is convergent if    and divergent if    .

 
 

  
   

 

   

 
 

  
   
 

  
   
 

  
   
 

  
    

     

Therefore convergent by p-series test.

Example:

Note: The series  
 

 
  

   is a divergent p-series also known as the harmonic series.

5.2 - P-Series
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An alternating series is a series whose terms are alternately positive and negative, usually in the form

              or           .

If the alternating series

          

 

   

                                      

                   for all  (i)
   
   

    (ii)

satisfies

then the series is convergent.

Note: This only tests for convergence. If the Alternating Series Test fails, use the Test for Divergence.

If             is the sum of an alternating series that satisfies

                   and          (ii)                (i)

                

then

Alternating Series Estimation Theorem

Find the sum of the series  
     

  
     

   correct to three decimal places. (By definition,     .)

 

      
        

 

  
  

         
          
     

(i)

  
 

  
   

 

 
      so 

 

  
    as    

   
   

 

  
    

(ii)

therefore, the series is convergent by alternating series test.

 

      
            

 

      
        

 

  
   

 

    
      

 

    
           

when    ,

       
 

 
  

 

 
  

 

  
   

 

   
    

 

   
          sum to three decimal places

so,

Example:

5.3 - Alternating Series with Alternating Series Remainder (Error 
Bound)
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Suppose  is a continuous, positive, decreasing function on      and let        . Then the series 

   
 
   is convergent if and only if the improper integral        

 

 
is convergent. In other words:

If        
 

 
is convergent, then    

 
   is convergent.(i)

If        
 

 
is divergent, then    

 
   is divergent.(ii)

Use the integral test to determine convergence or divergence of  
 

    
 
   .

The function      
 

    is positive, continuous, and decreasing on      , so the integral test can 

be applied.

 
 

  
     

 

 

    
   

 
 

  
     

 

 

    
   

 
 

      
        

 

 

    
   

  
 

   
    

 

 
    

 

 
  

Because the integral converges,  
 

    
 
   converges by the integral test.

Example:

5.4 - Integral Test
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If        
    

  
         , then the series    

 
   is absolutely convergent (and therefore 

convergent).

(i)

If        
    

  
         , then the series    

 
   is divergent.(ii)

If        
    

  
         , then this tests does not determine the convergence of the series 

   
 
   

(iii)

Test the series         

     
   for absolute convergence.

We use the ratio test with           

    :

 
    

  
       

             

                   

       

          
                 

      

    
         

  

  
    

 

 
   

   

 
      

 

 
 

 
     

 

 
   

 

 
 

 
    

Thus, by the ratio test, the given series is absolutely convergent and therefore convergent.

Example:

5.5 - Ratio Test
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If            
     

    , then the series    
 
   is absolutely convergent (and therefore 

convergent).
(i)

If            
     

    , then the series    
 
   is divergent.(ii)

If            
     

    , then this tests does not determine the convergence of the series 
   
 
   

(iii)

Test the convergence of the series   
    

    
     

 
 
   .

    
    

    
       

 

     
     

 
    

    
       

  
 
 
  

  
 
 
  

      
 

 
    

Thus the series converges by the root test.

Example:

5.6 - Root Test
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Suppose that    
 
 and    

 
 are series with positive terms. If

where  is a finite number and    , then either both series converge or both diverge.

Let  and  be positive numbers such that      . Because 
  

  
  is close to  for large  , there 

is an integer  such that

  
  

  
                         when     

              when     
and so

If    
 
 converges, so does     

 
 . Thus,     

 
 converges by part (i) of the comparison test. If    

 
 

diverges, so does     
 
 and part (ii) of the comparison test shows that     

 
 diverges.

Proof

Determine whether the series  
 

    
     

   converges of diverges.

Example:

We use the limit comparison with     
 

     
   , a convergent geometric series test (     

 

 
   

 ).

   
   

  

  
       

   

  

    
          

   

 

  
 
     

          

Because       
  

  
  exists and  

 

     
 converges,   

 

    
     

   converges by the limit comparison test.

5.7 - Limit Comparison Test
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Suppose that    
 
 and    

 
 are series with positive terms.

If    
 
 is convergent and    

 
     

 
 for all  , then    

 
 is also convergent.(i)

If    
 
 is divergent and    

 
     

 
 for all  , then    

 
 is also divergent.(ii)

      

 

   

                            

 

   

                             

 

   

Since both series have positive terms, the sequences     and     are increasing (     
          ). Also     , so     for all  . Since      , we have      . Thus,    
 for all  . This means that     is increasing and bounded above and therefore converges 
by the Monotonic Sequence Theorem. Thus    

 
 converges.

Let(i)

If    
 
 is divergent, then     (since     is increasing). But      , so      . Thus,     . 

Therefore    
 
 diverges.

(ii)

Proof

Determine whether the series  
 

        
         

   converges or diverges.

Compare it to the series  
 

       
 (a multiple of a convergent p-series)

 

        
             

 

   
   

                
        

Therefore      , so the series converges by comparison test.

Example:

5.8 - Direct Comparison Test
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If         does not exist or if           , then the series    
 
   is divergent.

Show that the series  
  

     
      

   diverges.

   
   

      
   

  

     
           

   

 

  
 
  
   

       
 

 
    

Therefore the series diverges by n-th term test.

Example:

5.9 - Test for Divergence (N-th Term Test)
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A telescoping series is a series where the terms cancel each other out in pairs. Because of all the 
cancelations, the sum collapses into just two or three terms. The sum of the series is equal to 
        .

 
 

      
        

 

   

    
 

      
       

 

   

 
 

   
     

 

   
     

 

   
       

 

      
        

Partial fractal decomposition:

 

 
   

 

   
      

 

      
        

           

          

       

  
 

 
   

 

   
     

 

   

    
 

 
     

 

 
   

 

 
     

 

 
   

 

 
       

 

 
   

 

   
      

   
 

   
     

   
   

      
   

  
 

   
           

So

Therefore, the series is a telescoping series and converges by the telescoiping series test. The sum 
of the series is 1.

Example:

5.10 - Telescoping Series
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If  has a power series representation (expansion) at  , that is, if

then its coefficients are given by the formula

   
       

  
       

Substituting this formula for   into the series, we see that if  has a power series expansion at  , then it 
must be of the following form.

      
     

  
           

      

  
             

       

  
              

      
       

  
             

 

   

      
       

  
         

 

   

      
     

  
       

      

  
         

This series is called the Taylor series of the function  at  (or about  or centered on  ). For the 
special case    the Taylor series becomes

This case arises often enough that it is given the special name Maclaurin series.

The  th-degree Taylor polynomial of  at  ,   is equal to

       
       

  
            

 

   

      
     

  
           

      

  
               

       

  
             

Note: The Taylor polynomial is a finite set of terms, while the Taylor series is an infinite series.

Find the Maclaurin series for   and the Taylor polynomial at  (or Maclaurin polynomial) with 
   .

       

          

            

Example:

5.11 - Taylor Polynomials
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Therefore, the Taylors series of  at  is

    
       

  
         

 

   

  
  

  
   

 

   

   
 

  
   

  

  
    

  

  
     

and the 3rd degree Taylor polynomial is
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Maclaurin Series for   :

           

            

              

                

              

Maclaurin Series for     :

           

             

               

              

              

Maclaurin Series for     :

                     

 

   
         

 

   

        

This is the sum formula for a geometric series (  
 

   
   ).

Maclaurin Series for 
 

   
   :

       
 

  
   

  

  
    

  

  
     

    
  

  
   

 

   

        

   
  

  
    

  

  
    

  

  
     

     
   

  
    

   

  
    

   

  
    

  

  
    

   

  
     

      
          

       
           

 

   

        

   
  

  
    

  

  
    

  

  
     

     
  

  
    

   

  
    

  

  
    

   

  
    

  

  
     

      
        

     
         

 

   

        

5.12 - Power Series for Elementary Functions
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Maclaurin Series for       :

Maclaurin Series for        :
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The series converges only when    .(i)

The series converges for all  .(ii)

There is a positive number  such that the series converges if        and diverges if 
       .

(iii)

For a given power series           
   there are only three possibilities:

The number  in case (iii) is called the radius of convergence of the power series. By convention, the 
radius of convergence is    in case (i) and    in case (ii). The interval of convergence of a power 
series is the interval that consists of all values of  for which the series converges. In case (i) the interval 
consists of just a single point  . In case (ii) the interval is       . In case (iii) note that the inequality 
       can be rewritten as          . When  is an endpoint of the interval, that is   
  , anything can happen - the series might converge at one or both endpoints or it might diverge at 
both endpoints. Thus, in case (iii) there are four possibilities for the interfal of convergence:

                                          

To find the radius and integral of convergence, the ratio test must be applied to the power series and 
then the endpoints tested for convergence [if case (iii)].

Find the radius and integral of convergence for:

 
       

    
         

 

   

   
   

 

             

                    

       

             
                     

   
 
             

     
                 

    

       
          

    
   

   

  
           

    
   

 
    

 
   

  
    

              
   

   
 

 
    

   

 
        

   

 
        

       

Radius of convergence:  

        

      

       

Integral of convergence:

Example:

5.13 - How to Find Radius and Interval of Convergence
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which diverges by the n-th term test.

when     :

 
     

    
     

 

   

 
 

 
    

 

   

which diverges by the n-th term test.

when    :

Thus, the series only converges when       , so the interval of convergence is 
      .
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In general,     is the sum of its Taylor series if

        
   

     

                             so that                             

If we let

then      is called the remainder of the Taylor series. If we can somehow show that              , then it 
follows that

   
   

         
   

                     
   

          

We have therefore proved the following.

If                 , where   is the  th-degree Taylor polynomial of  at  and

   
   

       

for        , then  is equal to the sum of its Taylor series on the interval        .

In trying to show that              for a specific function  , we usually use the following fact (Taylor's Inequality).

If              for        , then the remainder      of the Taylor series satisfies the inequality

        
 

      
                                                

Approximate the function           by a Taylor polynomial of degree  at    .(a)
How accurate is this approximation when      ?(b)

            
 
 
  

      
 

 
    

 
 
  

        
 

 
    

 
 
  

        
  

  
     

 
 
  

   
 

  
    

 

   
    

           
     

  
           

      

  
           

Thus, the second degree Taylor polynomial is

Example:

      

      
 

  
   

        
 

   
   

5.14 - Lagrange Error Bound for Taylor Polynomials
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The desired approximation is

              
 

  
         

 

   
         

The Taylor series is not alternating when    , so we can't use the Alternating Series Estimation Theorem 
in this example. But we can use Taylor's Inequality with    and    :

        
 

  
        

        
  

  
    

 

 
 
 
  

    
  

  
    

 

 
 
 
  

         

where            . Because    , we have          and so

Therefore, we can take         . Also      , so         and        . Then Taylors 
Inequality gives

        
      

  
          

      

 
             

Thus, if      , the approximation is accurate to within       .
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